

Portable Emission Measurement Strategy

U.S. EPA
Office of Transportation and Air Quality
February 13, 2002

Why Not the Lab?

- Accuracy
- Cost
- Practicality
- Sample Bias and Recruitment
- New Technology is Available

Real World Bus Emissions

Second-by-Second Cold Start Data

Accel More Important

Better Data Collection Methods

- Data collection is expensive
 - Recruiting costs from \$2,000 to \$100,000 per engine
 - Data collection budgets have diminished dramatically
- New approach and changes in data collection needed
 - Laboratory based recruitment and testing is a compromise both in terms of sampling and geography
 - Laboratory testing regimes don't reflect real world, inuse operation of vehicles and engines

Real World vs. Lab

Measuring Emissions in the Field

Portable emission measurement systems

- Allows us to bring the lab to the car or engine and test it on the road or in the field under normal operating conditions
 - These conditions are not adequately represented by laboratory driving cycles and "correction" factors used in models
 - Shows both how and where emissions are generated
- Frees us from the few laboratories around the country
 - We can test anywhere, any time
- Reduces problems related to sampling and modeling
 - Can test anything we can recruit
 - Less intrusive technology increases chances of high recruitment participation

Emissions Where They Occur

Technology Development

Goals

- Bring technology to market
- Make accurate, accepted equipment readily available
- Specify EPA needs so manufacturers can respond

Approach

- Cooperative Research and Development Agreements
 - Measure gasoline and diesel emissions
 - Operate unattended for extended periods of time
 - Accuracy requirements approach lab measurement
 - Goal is to have commercially available products in ~6 months
- OTAQ lab and contractor development
 - PM and toxics measurement capability
 - Measurement strategy development

Emissions Calculations

SPOT Simple Portable Onboard Test

- Magnetic mounts
- Heavy-duty locks
- Cellular, GPS, & CAN capability
- Zirconia sensor: total-NOx & O2
- Unique exhaust flow measurement
- Fuel-specific & mass rate emissions
- Brake-specific emissions based on power estimate

EPA-supported innovation

 NO_x/O_2 sensor

eductor

Partial

flow

Non-road **Exhaust Flow Measurement**

MAF sensor

- Low pressure drop
- ■Fast response
- Durable sensors
- Linear calibration
- Self-cleaning

Air flow in

Non-road Exhaust Flow Device

Fuel and Exhaust Flows

ExhFlow(scfm)= $(C_1(D_{exh}/D_{meter})^2+C_2)*MAF*(T_{mafabs}/T_{exhabs})^{0.5}$

 $FuelFlow(g/hr) = ExhFlow*CO_2/100*(12.01 + H:C_{ratiofuel}*1.008)(g/mol)*60(min/hr)*1.178(mol/scf)$

Emissions Concentrations

 $CO_{2}(\%) = (20.99*(1-(RH/100)*(P_{sat}/P_{barom}))-\%O_{2}-0.55*(NO_{x}/10000)/(1+0.3025*(H:C_{ratiofuel}))$

 $P_{sat}(kPa) = 1.775E - 9*T_{amb}{}^{5} + 3.687E - 7*T_{amb}{}^{4} + 2.483E - 5*T_{amb}{}^{3} + 1.395*E - 3T_{amb}{}^{2} + 4.578*E - 2T_{amb} + .6031$

Flow Device Version 3

Flow Device Version 3

Nonroad Emissions Data

PM Development

- Developing related measurement capability
 - Proportional sampling system
 - Humidity conditioning of exhaust sample
 - Preclassifier
- Evaluating continuous PM monitoring
 - Quartz crystal microbalance
 - Tapered element oscillating microbalance
- Time line
 - Expect prototype evaluations completed by Summer